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Land application of drinking-water treatment residuals 
(WTR) has been shown to control excess soil soluble P and 
can reduce off-site P losses to surface and ground water. To our 
knowledge, no field study has directly evaluated the impacts 
of land application of WTRs on ground water quality. We 
monitored the effects of three organic sources of P (poultry 
manure, Boca Raton biosolids, Pompano biosolids) or triple 
superphosphate co-applied with an aluminum-based WTR 
(Al-WTR) on soil and ground water P and Al concentrations 
under natural field conditions for 20 mo in a soil with limited 
P sorption capacity. The P sources were applied at two rates 
(based on P or nitrogen [N] requirement of bahiagrass) with 
or without Al-WTR amendment and replicated three times. 
Without WTR application, applied P sources increased 
surface soil soluble P concentrations regardless of the P source 
or application rate. Co-applying the P sources with Al-WTR 
prevented increases in surface soil soluble P concentrations and 
reduced P losses to shallow ground water. Total dissolved P and 
orthophosphate concentrations of shallow well ground water 
of the N-based treatments were greater (>0.9 and 0.3 mg L−1, 
respectively) in the absence than in the presence (?0.6 and 
0.2 mg L−1, respectively) of Al-WTR. The P-based application 
rate did not increase ground water P concentrations relative 
to background concentrations. Notwithstanding, Al-WTR 
amendment decreased ground water P concentrations from soil 
receiving treatments with P-based application rates. Ground 
water total dissolved Al concentrations were unaffected by 
soil Al-WTR application. We conclude that, at least for the 
study period, Al-WTR can be safely used to reduce P leaching 
into ground water without increasing the Al concentration of 
ground water.

Efficacy of Drinking-Water Treatment Residual in Controlling Off-Site Phosphorus Losses: 
A Field Study in Florida

S. Agyin-Birikorang* University of Florida
O.O. Oladeji Michigan State University
G.A. O’Connor and T.A. Obreza University of Florida
J.C. Capece Southern DataStream Inc.

Off-site phosphorus (P) losses to water bodies is a major 
concern because P is a limiting nutrient for eutrophication 

of most freshwaters (Sims et al., 1998). Phosphorus movement 
into water bodies can occur as lateral (surface water) or vertical 
(ground water) transport. Most Florida soils are characterized by 
coarse-textured surface horizons with a very limited capacity to 
retain P (Elliott et al., 2002a). Thus, in these soils there is concern 
that large P inputs increase the risk of ground water nonpoint-
source pollution. A P chemical fractionation of some Florida soils 
indicated that about 80% of the total P in the A-horizon was 
leachable (Graetz and Nair, 1995), and P leaching is likely to occur 
in such soils. Phosphorus leaching is exacerbated in soils where 
contaminated water is intercepted by drains or shallow water 
tables that join surface waters and feature relatively short ground 
water flow distances (Burgoa et al., 1991; Sims et al., 1998).

One suggested way to mitigate P leaching to ground water from 
soils with limited P sorption capacity is to amend the soil with 
drinking-water treatment residuals (WTR) (O’Connor et al., 2002; 
Elliott et al., 2002b; Ippolito et al., 2003; Elliott et al., 2005; No-
vak and Watts, 2005). Application of aluminum-based WTRs (Al-
WTR) to P-impacted soils could serve as a practical chemical-based 
best management practice (BMP) to reduce off-site P movement 
from fields via runoff and leaching. Reducing off-site P transport 
can reduce P loads into nutrient-sensitive surface water systems 
and consequently minimize the risk of eutrophication (Dayton and 
Basta, 2005a). Studies have shown reductions in P concentrations 
of runoff (Dayton et al., 2003) and leachate (Elliott et al., 2002b; 
O’Connor et al., 2002; Novak and Watts, 2004; Dayton and Basta, 
2005a) after amendment of P-impacted soils with WTR.

Underlying mechanisms behind WTR P adsorption have been 
studied. Ippolito et al. (2003) suggested that P is adsorbed by 
WTR initially as an outer-sphere complex or found in the diffuse 
ion swarm near individual WTR particles. With time, P becomes 

Abbreviations: BMP, best management practice; DPS, degree of phosphorus 
saturation; ICP–AES, inductively coupled plasma–atomic emission spectroscopy; PAN, 
plant-available nitrogen; TDP, total dissolved phosphorus; TSP, triple superphosphate; 
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aluminum-based WTR.
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more strongly adsorbed as an inner-sphere complex onto WTR 
(Ippolito et al., 2003). Based on spectroscopic measurements, 
Makris and O’Connor (2007) showed that adsorption of P by 
WTRs was strongly hysteretic. The authors observed P diffu-
sion into WTR bottleneck-shaped micropores, favoring long-
term stability of sorbed P by WTRs (Makris and O’Connor, 
2007). Agyin-Birikorang and O’Connor (2007) demonstrated, 
using an isotopic dilution technique coupled with a stepwise 
acidification procedure, that within the commonly encoun-
tered pH range of most agricultural soils (pH 4–7), WTR im-
mobilized P is stable and essentially nonlabile.

Most studies that evaluated the impacts of P-source and 
WTR additions on soil soluble P concentrations have focused 
on laboratory incubations (Dayton et al., 2003; Novak and 
Watts, 2004; Agyin-Birikorang and O’Connor, 2007), column 
leaching studies (Elliott et al., 2002b; O’Connor et al., 2002), 
or indoor rainfall simulation studies with packed boxes (Agyin-
Birikorang et al., 2007). Some studies have evaluated WTR ef-
fectiveness in controlling excess soil soluble P under field con-
ditions (Dayton and Basta, 2005a; Novak and Watts, 2005; 
Agyin-Birikorang et al., 2007; Bayley et al., 2008). However, 
these studies examined the extent of soluble P reductions in 
soils, and no attempt was made to directly assess P concentra-
tions of ground water due to WTR land application. To our 
knowledge, no field study has directly evaluated the impacts of 
land application of Al-WTRs on ground water quality.

Although land application of Al-WTR has been shown to ef-
fectively control excess soil soluble P and can reduce off-site P 
losses to surface and ground water, there is a concern that Al-
WTR particle dissolution in acid soils or aqueous suspensions 
could release significant quantities of Al to the environment. 
Studies have shown that Al-WTR amendment significantly in-
creased Al concentrations of a surface soil (Agyin-Birikorang et 
al., 2007). Excess Al in drinking water is of concern because of 
the suspected Al connection with Alzheimer’s disease or dialysis 
encephalopathy (Carol and Arnold, 1990; Driscoll and Driscoll, 
2005). Thus, in field experiments that involve Al-WTR land ap-
plication, it is expedient to investigate Al losses to water bodies.

The objectives of this study were to evaluate (i) WTR ef-
fectiveness in reducing P losses to ground water under natural 
field conditions from a typical Florida Spodosol amended with 
P sources of different solubilities and (ii) the effects of surface-
applied WTR on ground water Al concentration. Based on the 
effectiveness of Al-WTRs in reducing soluble P concentrations 
in soils, we hypothesized that land application of Al-WTRs 
would significantly reduce P leaching to ground water. Due to 
the circumneutral pH of most Al-WTRs, we hypothesized that 
land application of Al-WTR will not result in Al losses from 
the Al-WTR to ground water.

Materials and Methods
Study Site

The study was conducted at a cattle pasture located on the 
eastern border of Okeechobee County in southern Florida, 7 mi 
(11.3 km) northeast of Okeechobee and north of Lake Okeecho-

bee (27°N, 80.9°W). The soil at the study site is an Immokalee 
fine sand (sandy, siliceous, hyperthermic Arenic Alaquods). The 
soil series contains distinct A, E, and Bh horizons. Previous stud-
ies have shown that soil at the study site has a limited P sorp-
tion capacity (Graetz and Nair, 1995) and that P leaching is the 
dominant P loss mechanism (O’Connor et al., 2005).

Soil Characterization
The field was divided into 50 subunits, from which a com-

posite soil sample (formed by mixing 20 2.5-cm-diam. core 
samples) was collected from each subunit to characterize the 
initial soil conditions. Samples were taken from the top 5 cm 
of the A horizon, the center of the E horizon (approximately 
45–55 cm from the surface), and the top 10 cm of the Bh ho-
rizon (approximately 110–120 cm).

Air-dried soil samples (<2 mm) were analyzed for total P, 
Fe, and Al by inductively coupled plasma–atomic emission 
spectroscopy (ICP–AES) (PerkinElmer Plasma 3200; Perki-
nElmer, Wellesley, MA) after acid-peroxide digestion accord-
ing to the USEPA Method 3050A (USEPA, 1986a). Oxalate- 
(200 mmol  L−1) extractable P, Fe, and Al were determined 
by ICP–AES after extraction at a 1:60 solid/solution ratio 
(Schoumans, 2000). Water-extractable P (WEP) was deter-
mined by reacting soil with deionized water at a ratio of 1:10 
soil/solution ratio for 1 h (Kuo, 1996), with P concentration 
analyzed colorimetrically (Murphy and Riley, 1962). Degree 
of soil phosphorus saturation (DPS) was calculated as moles 
of oxalate- (200 mmol L−1) extractable P divided by the moles 
of oxalate- (200 mmol L−1) extractable Fe + Al (Schoumans, 
2000) and assuming a saturation factor (α) of 0.55 as suggested 
by Nair and Graetz (2002) for Florida soils. The DPS of surface 
soils is a measure of P loss potential from a soil, and a critical 
value of 0.25 (corresponding to ?10 mg kg−1 WEP) has been 
suggested for FL soils (Nair et al., 2004).

Characterization of Amendments
Portions of the applied amendments (P sources and WTR) 

were air-dried and ball-milled for analysis. The amendments were 
analyzed for total- and oxalate-extractable P, Fe, and Al as described 
previously. The P saturation index for the amendments was cal-
culated as moles of oxalate-extractable P divided by the moles of 
oxalate-extractable Fe + Al (Elliott et al., 2002b). Amendments 
for WEP concentrations were determined at a 1:200 amendment/
solution ratio (Sharpley and Moyer, 2000). The percentage of to-
tal P that was water extractable was then calculated. Total carbon 
(C) and N concentrations were determined in the amendments 
by combustion at 1010°C using a Carlo Erba analyzer (NA-1500 
CNS; Carlo Erba, Milan, Italy) as outlined in Nelson and Som-
mers (1996), and pH measurements were performed on the mate-
rials (1:2 solid/solution ratio) (Thomas, 1996). Percent solids were 
determined by drying materials at 105°C (Gardner, 1986).

Experimental Setup
The study was a 4 × 2 × 2 factorial experiment (four P sources 

and two application rates with or without WTR amendment), 



Agyin-Birikorang et al.: Efficacy of WTR in Controlling Off-site P Losses	 3

For proofing purposes only

© ASA, CSSA, SSSA

with an individual plot size of 20.7 × 95 m. Each treatment was 
replicated three times in a randomized, complete block design. 
An extra plot per block was left untreated as a control; thus, 
51 plots (17 plots/block and 3 blocks) were established. The 
field was fenced to prevent cattle from entering the plots, and 
individual plots were bermed to avoid cross-contamination of 
treatments from adjacent plots.

To assess the extent of P and Al leaching, two wells were in-
stalled in each plot at approximately 0.9 m and approximately 3 
m, representing depths above and below the spodic horizon. The 
wells, constructed by Southern DataStream, Inc. (Labele, FL), 
consisted of a piezometer probe, a PVC covering pipe, and a sam-
pling tube. The piezometer probe was made of a 15-cm stainless 
steel tube, and the sampling pipe was surrounded by PVC casing 
to reduce cross-contamination of well samples. A plastic collar, po-
sitioned above the sand-pack in the spodic horizon section of the 
deep well, and other engineering precautions ensured that samples 
collected represented ground water at the intended depth. Piezom-
eters were purged slowly at least three times after installation and 
before initiating the study to minimize the effects of installation 
disturbance. The two wells were installed approximately 1.2 m 
apart in each plot (each located approximately 0.6 m away from 
the center of each plot at opposite sides).

Three organic sources (two biosolids [one from Pompano 
Beach, FL, and the other from Boca Raton, FL] and poultry 
manure [not treated with alum] collected from Indiantown, 
FL) and triple superphosphate (TSP) were used. The Boca Ra-
ton biosolids was an anaerobically digested (biological P remov-
al–like) material, whereas the Pompano biosolids was produced 
via anaerobic digestion and stabilized with Al and Fe to reduce 
P solubility of the end product. The biosolids were selected 
based on differences in WEP content as a result of different 
processing procedure. The Boca Raton biosolids WEP content 
was approximately 5.5 g P kg−1, whereas the Pompano biosolids 
contained ?1.2 g WEP kg−1 (O’Connor et al., 2000).

Two application rates of the P sources, based on the plant-
available N (PAN) (179 kg PAN ha−1) and P (39.6 kg to-
tal  P  ha−1) requirements of bahiagrass (Paspalum notatum) 
(Hanlon, 1995), were used to attain N-based and P-based nu-
trient management. A preliminary study suggested ?40% or-
ganic N mineralization rate for the biosolids used for the study; 
therefore, PAN was calculated based on 40% organic N min-
eralization rate. Applying the organic fertilizer sources based 
on the N requirements of the crop (N-based rates) resulted in 
excessive P additions (?128 kg P ha−1) to the soil. A TSP fertil-
izer dose of 128 kg P ha−1 was therefore selected as a high rate to 
approximate the rate of P applied when biosolids or manure are 
applied at an N-based rate. Ammonium nitrate was applied to 
plots receiving a P-based application rate of the P sources (and 
the “N-based” TSP treatment) to equalize the N supplied by 
the N-based application rates of the organic sources of P, based 
on the calculated PAN levels.

The P sources were surface applied with or without Al-WTR 
amendment obtained from the Manatee Co. Water Treatment 
Plant in Bradenton, FL. The Al-WTR was generated from the 
use of aluminum salts [Al2(SO4)3·14H2O] as coagulants to re-

move turbidity, color, taste, and odor from raw water and to 
speed particulate matter removal from surface water obtained 
mostly from the Manatee River, which flows through south Flor-
ida. Dewatered Al-WTR was surface applied (22.4 dry Mg ha−1, 
based on preliminary laboratory studies) to plots using a Knight 
ProTwin Slinger, model 8030 V-box spreader by making three 
passes on each side of the plot or three round trips. The Al-WTR 
was applied to the plots first, and the P sources were added to the 
field 72 h later. Application of all amendments (WTR, P sources, 
and ammonium nitrate) was completed in March 2003.

Soil Sampling and Analysis
Composite soil samples (formed by mixing 20 2.5-cm-diam. 

core samples) were obtained from the surface (0–5 cm) of each 
plot to monitor changes in the soil properties after amendment 
application. Similarly, samples were collected from the middle 
of the E horizon (?45–55 cm from the surface) and the top 10 
cm of the Bh horizon (?110–120 cm) of each plot. Soil sam-
pling was performed in April 2003, ?1 mo after amendment 
application. Studies evaluating WTR effectiveness (Elliott et 
al., 2002b; Agyin-Birikorang et al., 2007) have shown that 
significant WTR-P reactions are detectable >1 mo after WTR 
application. Soil sampling was then performed at 6, 12, and 18 
mo after the first sampling. All holes were plugged to ensure 
that normal soil water infiltration occurred. Soil samples were 
air-dried and analyzed for total and oxalate-extractable P, Fe, 
and Al; WEP; and DPS as described previously. The study was 
terminated on 30 Sept. 2004 (?20 mo after commencement) 
because of hurricane-induced flooding of the field (Hurricanes 
Ivan on 19 Sept. 2004 and Jeanne on 25 Sept. 2004).

Ground Water Sampling and Analysis
Ground water samples were collected by pumping water 

slowly from the piezometers using the method of prolonged 
slow pumping at a steady rate (Backhus et al., 1993). A mini-
suction lift pump was used to withdraw ground water samples. 
The ground water was pumped directly into a glass contain-
er. Ground water samples from the deep wells were collected 
monthly throughout the study period (March 2003–September 
2004). Samples were obtained from the shallow wells monthly 
only during the rainy season (between June and October in 
2003 and between July and September 2004; Fig. 1). Thus, a 
total of 20 and 8 sampling times were obtained for the deep 
and shallow wells, respectively.

Ground water samples were analyzed for pH, PO4–P, total 
dissolved P (TDP), and total dissolved Al concentrations. The 
pH levels of the water samples were measured as described in 
Bates (1978). The PO4–P measurement was performed on a 
subsample filtered through a 0.45-µm syringe filter, with con-
centrations determined within 24 h after sample collection 
using ion chromatography (DX 500; Dionex Corporation, 
Sunnyvale, CA). Total dissolved P and Al concentrations were 
measured in the filtered water samples after digesting 10 mL 
of the samples with 0.5 mL 6 nmol L−1 H2SO4 and 0.15 g of 
potassium persulfate in an autoclave for 1 h (Pote and Daniel, 
2000). Digested samples were analyzed for P and Al concentra-
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tions using ICP–AES (PerkinElmer Plasma 3200; PerkinElmer, 
Wellesley, MA). All sampling and analyses were performed in 
accordance with the Florida Dep. of Environmental Protec-
tion’s standard operating procedures (Florida Department of 
Environmental Protection, 2002) to minimize sampling and 
handling contamination.

Statistical Analysis
Soil chemical data were analyzed using the mixed proce-

dure (PROC MIXED), and ground water P and Al concentra-
tions data were analyzed using the repeated measures option 
of PROC MIXED in SAS version 9.0 (SAS Institute, 2002). 
Ground water P and Al concentrations were logarithmically 
transformed to conform to the normality and homogeneity 
assumptions of PROC MIXED. Because the total dissolved 
Al, PO4–P, and most of the TDP concentration values of the 
ground water samples were <1 mg L−1, we further transformed 
the values by adding 1 to the values and then determined the 
logarithm of the sum to avoid negative values (Neter et al., 
1996). Data were back transformed for all discussions in this 
article. Treatment effects were evaluated using the LSMEANS 
statement of PROC MIXED along with adjusted Tukey’s 
means separation (SAS Institute, 2002). Treatment differences 
were considered significant at P ≤ 0.05.

Results and Discussion
Characteristics of Amendments and Pre-amended Soil

The pH values of the P sources ranged from 5.9 for the TSP 
to 8.2 for the Boca Raton biosolids (Table 1). The percent sol-
ids also varied with amendment; the biosolids (Boca Raton and 
Pompano biosolids) had ?140 g kg−1 solid contents, whereas 
the manure had ?270 g kg−1 solid contents. Boca Raton bio-
solids had the greatest amount of total P (39 g kg−1), followed 
by the Pompano biosolids (24.1 g kg−1); these values are con-
sistent with values reported for most biosolids (?3–40 g kg−1) 
(Elliott et al., 2002a, 2002b; O’Connor et al., 2005). The poul-
try manure had the least total P content, but the observed value 
(18.9 g kg−1) was close to the average value (20 g kg−1) reported 
for chicken manure total P by Barnett (1994). Of the organic 
sources of P, Boca Raton biosolids had the greatest “available” 
P (i.e., WEP) concentration.

The WTR pH was 5.6 (Table 1), which was slightly below 
the range of pH values reported for Al-WTRs (6.0–8.4) (Makris 
and O’Connor, 2007). The total P concentration was typical of 
Al-WTRs (0.3–4.0 g P kg−1) (Dayton et al., 2003; Makris and 
O’Connor, 2007). The total Al concentration (107 g Al kg−1) 
was within the range reported by others (15–177 g Al kg−1) 
(Dayton et al., 2003; Makris and O’Connor, 2007). Oxalate-
extractable Al was approximately 80% of the total, which is 
suggestive of WTRs amorphous nature. Phosphorus retention 
of WTRs is strongly related to amorphous Fe and Al concen-
trations (Elliott et al., 2005; Agyin-Birikorang et al., 2007). 
Gallimore et al. (1999), Dayton et al. (2003), and Dayton and 
Basta (2005a, 2005b) concluded that the amorphous (oxalate-
extractable), rather than the total, Al content of WTR deter-
mines WTR effectiveness in reducing runoff P. Therefore, the 
high percentage of amorphous Al content portends that the 
Al-WTR will be an effective P sorbent.

Before amendments application, the surface soil at the study 
site was acidic (pH 5.5) and low in total and oxalate-extractable 
P, Fe, and Al (Table 2). The values of the chemical character-
istics of the soil used for the study were consistent with values 
observed for Florida Spodosols (Graetz and Nair, 1995).

Amendments Effects on Soil
Analysis of variance indicated significant effects of P sourc-

es, P application rates, and WTR amendment as well as their 
interaction on WEP concentrations and the P-related measure-
ments (e.g., DPS and oxalate-extractable Fe and Al) of the sur-
face soil. There were no time effects on soil properties resulting 
from amendment with P sources and WTR.

Without WTR amendment, soil Fe+Al concentrations 
of the poultry manure- and TSP-treated plots were low 
(?5 mmol kg−1) and not different from the background soil 
(control) concentrations (Fig. 2). The biosolids treatments, on 
the other hand, significantly increased the Fe + Al concentra-
tions of the native soil. Amending the soil with WTR signif-
icantly (p ≤ 0.004) increased the oxalate-extractable Fe + Al 
content of the soil (Fig. 2). Elliott et al. (2002b) reported that 

Fig. 1. Weekly total rainfall distribution at the research site in (A) 2003 
and (B) 2004 (Source: South Florida Water Management District, 
Okeechobee County office). Note the differences in scales of the y 
axes of (A) and (B) after 100 mm rainfall.



Agyin-Birikorang et al.: Efficacy of WTR in Controlling Off-site P Losses	 5

For proofing purposes only

© ASA, CSSA, SSSA

the P sorbing ability of WTRs, when added to a sandy soil 
amended with biosolids, could be predicted based on the amor-
phous metal oxide content of the WTRs. Thus, an increase in 
oxalate-extractable Fe + Al content of the WTR-amended soil 
was expected to increase the P sorption capacity of the soil.

Application of the P sources alone (without WTR amend-
ment) significantly (p < 0.001) increased the DPS values of the 
soil relative to the control (Fig. 3). The magnitude of DPS in-
crease was a function of the type and the application rate of the 
P source. For example, at the higher rate (N-based rate) of ap-
plication, soils treated with poultry manure and TSP had DPS 
values of 0.84 and 0.93, respectively; these values suggest that 
soils receiving these treatments could contribute significant 
amounts of P in runoff and/or leachate. The biosolids-amended 
soils (without WTR amendments) had DPS values significantly 
less than those of the TSP- and poultry manure–amended soils. 
The biosolids contained appreciable amounts of Fe and Al (Table 
1), hence the lower DPS values. However, DPS values of the 
biosolids-amended soils were greater than the critical value for 
Florida soils (Fig. 3), suggesting that biosolids application alone 
to Florida sandy soils could result in off-site P losses.

Amendment with WTR significantly (p < 0.001) reduced the 
DPS of surface soil irrespective of the type and application rate of 
the P source (Fig. 3). The reduction in DPS persisted throughout 
the sampling period, suggesting a long-term increase in the P sorp-
tive capacity of the system. Degree of P saturation has been shown 
to correlate positively with P loss potentials. Pautler and Sims 
(2000) found that P solubility increased significantly (r2 = 0.70) 
as soil P saturation increased in 41 agricultural soils in Delaware, 
USA. Hooda et al. (2000) found that soil DPS was significantly 
related to soil P desorption. The critical DPS value for Florida soils 
is suggested to be 0.25, which corresponds to ?10 mg WEP kg−1. 
Thus, soils with DPS values >0.25 are expected to release signifi-
cant amounts of P to surface runoff or leaching (Nair et al., 2004). 
In the presence of WTR amendment, soil DPS values were similar 
for the different P sources and the two P-source application rates 
of (Fig. 3). Irrespective of P source or P-source application rates, 
the soil DPS values were reduced below the 0.25 critical value by 
the added WTR; this suggests the ability of WTR to reduce P loss 
potential of the soil.

Consistent with the DPS values, soils receiving P sources 
only (without WTR amendments) had significantly greater 
WEP concentrations (>10 mg kg−1) than the control and the 
WTR-amended soils (Fig. 4). In the absence of WTR, there 
were significant (p ≤ 0.001) differences among the WEP values 
of the treatments having different P sources and between the 
two rates of P application. However, with WTR amendment, 
these differences were no longer significant (Fig. 4). The results 
of the soil DPS and WEP concentrations were consistent with 
findings from other studies that concluded that WTR can ef-
fectively immobilize and reduce soil-soluble P (Ippolito et al., 
2003; Elliott et al., 2002b; Makris et al., 2005; Dayton and 
Basta, 2005a; Agyin-Birikorang et al., 2007).

Effects of Drinking-Water Treatment Residuals  
on Ground Water Phosphorus Concentrations

The TDP concentrations of the shallow wells ranged be-
tween 0.6 and 1.2 mg L−1, and the PO4–P concentrations of 
the shallow ground water ranged between 0.2 and 0.95 mg L−1. 
Despite the differences in the TDP and PO4–P values of the 
shallow wells, data for PO4–P and TDP concentrations of 
samples followed similar trends (Fig. 5 and 6). The observed 
background (control) TDP concentration of the shallow wells 
of the study site (0.6–0.8 mg TDP mg L−1) exceeded the criti-
cal P solution concentration (0.10 mg L−1) guidelines estab-

Table 1. Chemical properties of amendments (oven dry basis) used in the study. Numbers are mean values of six replicates ± 1 SD.

Chemical characteristics Poultry manure Boca Raton biosolids Pompano biosolids TSP† Al-WTR
pH 6.8 ± 0.1 8.2 ± 0.2 7.9 ± 0.2 5.9 ± 0.1 5.6 ± 0.2
Total C, g kg−1 320 ± 42.9 347 ± 33.8 366 ± 26.8 ND 139 ± 10.9
Total N, g kg−1 84.4 ± 1.06 80.6 ± 7.84 70.3 ± 9.21 ND 7.24 ± 1.06
Solids, g kg−1 270 ± 42.8 134 ± 16.9 154 ± 34.7 996 ± 4.00 406 ± 62.4
Total P, g kg−1 18.9 ± 3.8 38.7 ± 2.3 24.1 ± 4.2 209 ± 1.79 4.69 ± 0.7
Total Al, g kg−1 0.94 ± 0.1 9.37 ± 0.4 9.26 ± 1.4 10.0 ± 0.42 107 ± 8.3
Total Fe, g kg−1 1.53 ± 0.3 24.3 ± 3.1 32.8 ± 6.4 15.7 ± 0.64 6.08 ± 0.4
Oxalate P, g kg−1 10.4 ± 1.2 26.4 ± 3.9 28.5 ± 3.2 186 ± 3.21 4.33 ± 0.8
Oxalate Al, g kg−1 0.79 ± 0.1 6.50 ± 0.9 7.41 ± 0.6 6.90 ± 0.51 84.3 ± 6.2
Oxalate Fe, g kg−1 0.82 ± 0.3 19.4 ± 2.3 24.7 ± 4.2 11.0 ± 0.43 5.16 ± 1.0
WEP, g kg−1 0.85 ± 0.1 2.59 ± 0.6 0.34 ± 0.1 178 ± 3.25 ND
PWEP, % 4.49 ± 0.3 6.69 ± 0.5 1.41 ± 0.1 85.2 ± 0.9 NA
PSI NA† 1.44 0.7 NA 0.02

† Al-WTR, aluminum-based water treatment residuals; NA, not applicable; ND, not determined; PSI, phosphorus saturation index (PSI = [oxalate-P/
oxalate-Fe + oxalate-Al (in moles)]); PWEP, percent water-extractable phosphorus; TSP, triple super phosphate; WEP, water-extractable phosphorus.

Table 2. Characteristics of the Immokalee soil used in the field study. 
Numbers are mean values of 100 replicates (50 subunits analyzed 
in duplicates) ±1 SD.

Chemical
characteristics

Horizons
A E Bh 

pH 5.5 5.9 5.1
Total P, mg kg−1 24.5 ± 5.46 7.9 ± 4.56 24.5 ± 11.3
Total Al, mg kg−1 72 ± 23.3 33.6 ± 7.55 1280 ± 170
Total Fe, mg kg−1 101 ± 39.6 38.5 ± 6.21 94.8 ± 23.2
Oxalate P, mg kg−1 10.0 ± 2.95 3.76 ± 2.76 23.8 ± 13.7
Oxalate Al, mg kg−1 54.8 ± 6.74 15.8 ± 5.35 970 ± 418
Oxalate Fe, mg kg−1 61.7 ± 8.52 13.0 ± 5.98 39.0 ± 5.08
WEP†, mg kg−1 4.07 ± 0.78 0.77 ± 0.32 3.31 ± 0.54
DPS 0.20 0.14 0.02

† DPS, degree of phosphorus saturation; WEP, water-extractable phosphorus.
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lished for streams (USEPA, 1986b). However, the ground 
water P concentrations were similar to the upper limits of 
ground water P concentrations observed by others in Florida 
(0.1–0.7 mg TDP mg L−1) (Woodard et al., 2007) and else-
where (0.05–0.6 mg TDP mg L−1) (Nelson et al., 2005). The 
elevated ground water P concentration possibly resulted from 
decades of intensive dairy cattle production at the site (Ken-
neth R. Woodard, personal communication, 2007). High 
ground water P concentrations are not uncommon from fields 

subjected to long-term disposal of manure (0.4–0.9 mg L−1) 
(Breeuwsma et al., 1995) and sewage (0.3–1.5 mg L−1) (Cor-
bett et al., 2001). Despite the high ground water background 
P concentration of our study site, treatment effects of the soil 
surface applied amendments were observed.

Although the shallow ground water P concentrations showed 
significant temporal variability over the experimental period, 
treatment effects on shallow ground water P concentrations 
were still obvious (Fig. 5 and 6A–6D). The observed temporal 
variability of the ground water P concentrations could be at-
tributed to rainfall variability over the sampling period (Fig. 1), 
which possibly resulted in differential P leaching over time.

Without WTR application, the greatest ground water TDP 
and PO4–P concentrations during the first 7 mo of the study 
period were found with the TSP “N-based” treatment, fol-
lowed by soils treated with poultry manure, Boca Raton bio-
solids, and Pompano biosolids (N-based). However, from 7 to 
20 mo, the ground water TDP and PO4–P concentrations of 
the TSP N-based treatment significantly decreased and stabi-
lized at ?0.8 and 0.60 mg L−1, respectively (Fig. 5D and 6D). 
The WEP values (Table 1) showed that TSP was >85% water 
soluble, suggesting that much of the excess P in the TSP (N-
based) treated soil leached out during the first year of applica-
tion. Despite the temporal variability of the ground water TDP 
and PO4–P concentrations, P leaching from soils treated with 
the organic sources of P (poultry manure and biosolids) was 
apparently consistent throughout the sampling period (Fig. 5 
and 6A–6C). A low percentage of the total P of the organic 
sources of P (?1.5–7%; Table 1) was water soluble and could 
have resulted in slow P release from the soils treated with the 
organic sources of P. Application of WTR prevented an in-
crease in ground water (shallow well) P concentrations from 
the treatments with the P sources applied at the N-based rates. 

Fig. 2. Effect of phosphorus sources (applied at N-based and P-based 
rates) and drinking-water treatment residuals (WTR) amendment 
on mean oxalate-extractable Fe+Al concentrations of the A 
horizon (0–5 cm depth) soil samples collected throughout 
the soil sampling period (April 2003–September 2004). Error 
bars denote 1 SD of the mean. Treatments having the same 
letter are not significantly different according to the adjusted 
Tukey multiple comparison test at a significance level (α) of 
0.05. Boca, Boca Raton biosolids; Manure, poultry manure; 
N-based, application rate based on the nitrogen requirements of 
bahiagrass; P-based, application rate based on the phosphorus 
requirements of bahiagrass; Pompano, Pompano biosolids; TSP, 
triple superphosphate.

Fig. 3. Effect of phosphorus sources (applied at N-based and P-based 
rates) and drinking-water treatment residuals (WTR) amendment 
on degree of phosphorus saturation (DPS) of the A horizon (0–5 
cm depth) soil samples collected throughout the soil sampling 
period (April 2003–September 2004). Horizontal line represents 
critical DPS value for Florida sandy soils. Error bars denote 1 SD of 
the mean. Treatments having the same letter are not significantly 
different according to the adjusted Tukey multiple comparison 
test at a significance level (α) of 0.05. Boca, Boca Raton biosolids; 
Manure, poultry manure; N-based, application rate based on the 
nitrogen requirements of bahiagrass; P-based, application rate 
based on the phosphorus requirements of bahiagrass; Pompano, 
Pompano biosolids; TSP, triple superphosphate.

Fig. 4. Effect of phosphorus sources (applied at N-based and P-based 
rates) and drinking-water treatment residuals (WTR) amendment 
on mean water-extractable P of the A horizon (0–5 cm depth) soil 
samples collected throughout the soil sampling period (April 
2003–September 2004). Error bars denote 1 SD of the mean. 
Treatments having the same letter are not significantly different 
according to the adjusted Tukey multiple comparison test at a 
significance level (α) of 0.05. Boca, Boca Raton biosolids; Manure, 
poultry manure; N-based, application rate based on the nitrogen 
requirements of bahiagrass; P-based, application rate based on 
the phosphorus requirements of bahiagrass; Pompano, Pompano 
biosolids; TSP, triple superphosphate.
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Fig. 5. Trends of total dissolved phosphorus concentrations of shallow ground water samples collected throughout the sampling period (July–
October 2003 and June–September 2004) from plots amended with (A) poultry manure, (B) Boca Raton biosolids, (C) Pompano biosolids, 
and (D) triple superphosphate. A total of nine samplings from the shallow well of each plot were used to plot trends. Control, no P source and 
drinking-water treatment residuals (WTR) application; N-based, application rate based on the nitrogen requirements of bahiagrass; P-based, 
application rate based on the phosphorus requirements of bahiagrass.

Fig. 6. Trends of orthophosphate concentrations of shallow ground water samples collected throughout the sampling period (July–October 2003 
and June–September 2004) from plots amended with (A) poultry manure, (B) Boca Raton biosolids, (C) Pompano biosolids, and (D) triple 
superphosphate. A total of nine samplings from the shallow well of each plot were used to plot trends. Control, no P source and drinking-water 
treatment residuals (WTR) application; N-based, application rate based on the nitrogen requirements of bahiagrass; P-based, application rate 
based on the phosphorus requirements of bahiagrass; WTR, drinking-water treatment residuals.
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In the presence of WTR, the ground water TDP and PO4–P 
concentrations were, respectively, similar among both the plots 
treated with different P sources and to background concentra-
tions (Fig. 5 and 6).

The water samples collected from the shallow wells of the 
plots having the P sources applied at P-based rates (without 
WTR amendments) had ground water TDP and PO4–P con-
centrations similar to those of the control plots (Fig. 5 and 6). 
Thus, any P leached from the treatments with P sources ap-
plied at P-based rates would have been too little to significantly 
pollute the percolating water. The data suggest that applica-
tion of P sources at P-based rates, without any P-binding soil 
amendment, could be a BMP to prevent off-site P losses from 
agricultural fields.

Drinking-Water Treatment Residual Effects on Ground 
Water Aluminum Concentrations

Land application of Al-WTR significantly increased oxalate- 
extractable Al content of the surface soil, which is consistent 
with the trends observed by others (Dayton and Basta, 2005a; 
Agyin-Birikorang et al., 2007). Although most of the WTR 
influence would occur initially near the soil surface, there is 
a concern among regulators that Al from the surface-applied 
Al-WTR could contaminate ground water. Therefore, total 
dissolved Al concentrations in shallow and deep ground water 
were monitored after surface application of Al-WTR.

Ground water total dissolved Al concentrations were unaf-
fected by the Al-WTR application. Total dissolved Al concen-
trations of the samples obtained after amendments application 

and throughout the sampling period from the shallow wells 
ranged from 0.07 to 0.12 mg Al L−1, and concentrations in deep 
wells ranged from 0.14 to 0.25 mg Al L−1 (Fig. 7). The ranges 
in ground water Al concentrations of the WTR-amended treat-
ments compared well with the controls (0.07–0.11 Al mg L−1 
for shallow wells and 0.17–0.21 mg Al L−1 for deep wells). 
Total dissolved Al concentrations were within (or close to) 
the Florida Groundwater Guidance Concentration value of 
≤0.2 mg L−1 (Merchant, 1989; Jain et al., 2005) and less than 
ground water Al concentrations observed by Nilsson and Berg-
kvist (1983). Generally, the Al concentrations were greater in 
the deep wells than in the shallow wells, which may reflect con-
tributions of organically complexed Al species from the spodic 
horizon but not from the surface-applied treatments. Nilsson 
and Bergkvist (1983) studied Al chemistry in Swedish podzols 
and reported greater total Al concentrations (2.6–3.1 mg L−1) 
in leachate samples below the Bh horizon than in water samples 
taken above the Bh horizon (0.09–1.3 mg L−1).

The results suggest that Al-WTR can be safely used to en-
hance the P-sorption capacity of Florida sandy soils and reduce 
soluble P losses to ground water without increasing total dis-
solved Al concentrations in ground water. Several studies have 
shown that pH control of soluble Al concentrations dominates 
Al ecological risks (Lindsay, 1979; Sloan et al., 1995; Fest et 
al., 2007). The pH values of the Al-WTR, the WTR-amended 
soil, and the ground water were 5.6, 5.5, and 5.9, respectively. 
At such pH values, Al species are likely to be dominated by 
hydrolytes of Al (Lindsay, 1979; Sloan et al., 1995; Lindsay 
and Walthall, 1996) and other organically complexed Al forms 

Fig. 7. Trends of total dissolved Al concentrations in water samples collected from (A) shallow and (B) deep wells throughout the sampling period (July–
October 2003 and June–September 2004 for the shallow wells and March 2003–September 2004 or the deep wells). Nine samplings of the shallow 
wells and 20 deep well samplings from all the plots were used to plot trends. N-based, application rate based on the nitrogen requirements of 
bahiagrass; P-based, application rate based on the phosphorus requirements of bahiagrass; WTR, drinking-water treatment residuals.
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(Lindsay and Walthall, 1996; Fest et al., 2007) rather than free 
Al3+. Hence, there is little concern that free Al3+ will leach from 
the soil surface–applied Al-WTR to contaminate water bodies 
except under adverse conditions (e.g., pH <4).

Summary and Conclusions
This study was conducted on a typical Florida Spodosol 

amended with different P sources (biosolids, manure, and inor-
ganic fertilizer) applied at P- or N-based rates and with or with-
out WTR application. Surface-applied WTR reduced P leaching 
from the soil treated with different P sources applied at the N-
based rates. Although the native ground water P concentrations 
at the site were generally high, the results suggest that WTR 
could be used to prevent further deterioration of the ground wa-
ter when P sources are applied to the site at the N-based rate. 
Minimal or no increases in ground water P concentrations oc-
curred when the P sources were applied at P-based rates (without 
WTR amendment) relative to the background (control) P con-
centration. Nevertheless, WTR application reduced the ground 
water P concentrations resulting from the P-based treated plots. 
The increase in Al concentration of the surface soils after WTR 
application was not accompanied by increases in total dissolved 
Al concentrations in the ground water. Thus, at least for the 
study period, WTR can be safely used to enhance P sorption 
capacity of Florida Spodosols and prevent P leaching into the 
ground water without increasing ground water Al concentration. 
Although WTR adsorbs tremendous amount of P and does not 
readily release P back into the environment, P loadings in ex-
cess of WTR P retention capacity could result in off-site P losses 
from WTR-amended soils. Thus, BMPs that limit excessive P 
loadings must be adopted, in addition to WTR amendment, to 
ensure long-term P control. Further studies are needed to de-
termine the impact of heavy rainfall events (e.g., hurricanes) on 
P and Al losses to surface runoff and to determine setback dis-
tances from drainage lines to minimize this impact.
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